TIME-RESOLVED ENERGY DISPERSIVE EXTENDED X-RAY ABSORPTION OF FINE STRUCTURE (EXAFS) MEASUREMENT OF OLIGOMERISATION REACTION CATALYSED BY NICKEL HOMOGENEOUS CATALYST AND ALKYL-ALUMINIUM CO-CATALYST

M. B. Abdul Rahman¹, J. Evans² and A.J. Dent³

¹Department of Chemistry, University Putra Malaysia, 43400 UPM Serdang (Malaysia)
²Department of Chemistry, University of Southampton, S017 3AS Highfield (England)
³Daresbury Laboratory, Synchrotron Radiation Source, Warrington (England)
E-mail: basya@fsas.upm.edu.my
(Received, November 25, 2002)

ABSTRACT

Energy Dispersive EXAFS (EDE) data has been analysed for the nickel (3-diketonate catalysts, Ni(dpm)₂, using curved wave theory with \textit{ab initio} phaseshifts. The derived parameters for nickel intermediate compounds were in good agreement, within experimental error of 0.02-0.05 Å for the bond distances. A stopped flow system was used for \textit{in situ} time-resolved EDE studies on the nickel systems at room temperature. The growth of a pre-edge feature and change at the top of the edge can be clearly seen to show the reaction reached completion in less than 6 s indicates averaged distances of 3 Ni-O/C 2.00 Å.

Key words: Energy Dispersive Data (EDE), Nickel B, diketonate & \textit{abinitio} phaseshifts.

INTRODUCTION

The oligomerisation of alkenes such as ethene, propene and butadiene using homogeneous catalysts has received much attention recently. A variety of nickel catalysts have been reported¹ to be active in producing -olefins from alkenes such as butene, hexene and octene. Keim² and coworkers and others have developed a number of nickel-based catalysts for alkene oligomerisation. The ethene oligomerisation reaction using Ni(cod)₂ and the ligand PPh₂CH₂C(CF₃)₂OH in toluene at 50°C, gives a system that catalyses the formation of higher olefins (C₄-C₂₀) from ethene. Linear and a-olefins, which are important compounds in the industrial synthesis of surfactants and plasticisers, are mainly produced by the oligomerisation of ethene. Higher α-olefins can be obtained from ethene through oligomerisation technologies, such as those used by Ethyl Corporation (alkylaluminium co-catalyst) and Shell³ (SHOP - Shell Higher Olefins Process), which, with approximately a one million ton capacity in 1990, is one of the largest applications of homogeneous catalysis by a transition metal.

In particular, these systems are often extremely active towards alkene oligomerisation, even at low temperature, making them difficult to study by standard technique. This research will extend the scope of previous EXAFS studies on the activation of homogeneous nickel catalysts with alkyl aluminium reagents by concentrating on different catalyst precursors and improved time resolution. Extensive Ni K-edge EXAFS has proved useful for studying nickel catalysed propene dimerisation⁴ and oligomerisation. These studies probed the local structure of the major species present during the activation and operation of the active catalysts after addition of aluminium co-catalysts.
EXPERIMENTAL

In this study, energy dispersive EXAFS experiments were performed using a modified HiTech Scientific stopped-flow system with Kapton windows and giving a theoretical mixing time of 5 ms. A bent asymmetric-cut Si(220) monochromator in a Bragg geometry cooled by an In-Ga eutectic bath was used. Calibration of spectra with respect to a Ni foil monitor and background subtraction was achieved using the program PAXAS. Curve fitting analysis by least squares refinement of the non-Fourier filtered k^3-weighted data was carried out within EXCURVE, using spherical wave method with ab initio phaseshifts and backscattering factors. The statistical validity of shells was assessed by published means.

RESULTS AND DISCUSSION

Extensive investigation of the system was carried out on a ratio of \(\text{Ni(dpm)}_2\text{AIEt}(\text{OEt})_2 \) of 1:6 in the presence of 1-hexene, where dramatic changes in the white line can be clearly seen in Figure 1. The 30 consecutive spectra were performed with a 16 ms integration time and 1000 accumulations. Single frame took 16 s, and reached completion within 8 min. Preliminary XANES analysis showed the intermediate reaction occurs between the 1st to the 8th frame indicating changes of structural parameters takes place. Particular interest has focused on the application of EDE to study the first ten spectra, 20th, 30th (last consecutive spectrum) and after 20 minutes. Each spectrum was analysed in detail concerning the first and second coordination.

Figure 1: The 30 consecutive spectra were performed at 16 ms integration time, 1000 accumulations. Singles frame took 16 s, and reach completion within 8 min. for \(\text{Ni(dpm)}_2\text{AIEt}(\text{OEt})_2 \) -hexene of 1:6:20 [Ni] (60 mM) using stopped-flow techniques.
Figure -2: Normalised Ni K-edge EDE spectra of Ni(dpm)$_2$ in toluene comparing the (a) 1st, (b) 2nd, (c) 9th, (d) 20th, (e) 30th and (f) after 20 min spectra for the reaction of Ni(dpm)$_2$:AIEt$_2$(OEt):1-hexene of 1:6:20 [Ni] (60 mM).

Figure -3: The relationship between coordination number with time as derived from curve fitting for the dispersive EXAFS measurements of Ni(dpm)$_2$:AIEt$_2$(OEt):1-hexene of 1:6:20 [Ni] (60 mM).
Table-1 : The Ni K-edge EXAFS analysis results for the reaction of Ni(dpm)$_2$:AlEt$_2$(OEt):1-hexene of 1:6:20, [Ni] (60mM) at room temperature using time-resolved EDE.

<table>
<thead>
<tr>
<th>Frame</th>
<th>EF(eV)</th>
<th>R (%)</th>
<th>Fl ($X10^{-3}$)</th>
<th>CN</th>
<th>R(A)</th>
<th>A(A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.69</td>
<td>44.67</td>
<td>6.0</td>
<td>3.7 (2) O</td>
<td>1.843 (3)</td>
<td>0.010</td>
</tr>
<tr>
<td>2</td>
<td>3.30</td>
<td>48.57</td>
<td>8.3</td>
<td>1.8 (5)0 2.8 (4) C</td>
<td>1.892 (35)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.931 (42)</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.41</td>
<td>44.94</td>
<td>7.4</td>
<td>1.6 (1)0 2.8 (4) C</td>
<td>1.889 (26)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.941 (28)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.04</td>
<td>46.77</td>
<td>7.6</td>
<td>1.7 (6) O</td>
<td>1.888 (55)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5 (8) C</td>
<td>1.934 (26)</td>
<td>0.010</td>
</tr>
<tr>
<td>5</td>
<td>3.56</td>
<td>47.54</td>
<td>7.7</td>
<td>2.1 (7) O</td>
<td>1.898 (31)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7 (9) C</td>
<td>1.932 (29)</td>
<td>0.012</td>
</tr>
<tr>
<td>6</td>
<td>5.45</td>
<td>44.18</td>
<td>6.7</td>
<td>1.8(5)0 2.6 (4) C</td>
<td>1.898 (15)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.927 (44)</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.6</td>
<td>44.26</td>
<td>6.8</td>
<td>2.1 (3)0 2.7 (8) C</td>
<td>1.905 (29)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.937 (45)</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.94</td>
<td>41.76</td>
<td>6.3</td>
<td>2.1 (8) O</td>
<td>1.902 (18)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9 (4) C</td>
<td>1.927 (45)</td>
<td>0.012</td>
</tr>
<tr>
<td>10</td>
<td>3.32</td>
<td>42.77</td>
<td>7.3</td>
<td>2.2(1)0 2.8 (5) C</td>
<td>1.922 (26)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.956 (41)</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.15</td>
<td>40.73</td>
<td>6.0</td>
<td>1.8(6)0 3.0 (5) C</td>
<td>1.919 (28)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.970 (25)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>20 min</td>
<td>4.07</td>
<td>36.39</td>
<td>4.4</td>
<td>1.8(5)0 3.1 (8) C</td>
<td>1.930 (40)</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.972 (31)</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>

(Statistical errors are given in parentheses)

Figure -4 : Reaction consistent with the dispersive EXAFS results for the Ni(dpm)$_2$ catalyst reaction with AlEt$_2$(OEt) in timescales of 16 s (1000 scans x 16 ms).
sphere. The edge structure of the Ni K-edge spectrum shows a marked growing peak at the shoulder before the edge\(^1\).

Figure 2 showed the normalised spectrum of the reagent solution is compared with 1\(^{st}\), 2\(^{nd}\), 9\(^{th}\), 20\(^{th}\), 30\(^{th}\) and after 20 minutes indicates a changing process during the reaction. As observed above, 1,000 scans provide a better signal to noise ratio, although significant time resolution is lost. A good fit to all these spectra and their Fourier transform were obtained with a good approximation to the Ni-O (1.85 to 1.95 Å) and N-C bond distance (1.90 to 2.00 Å)\(^12\). Refining the coordination numbers and bond distances for Ni-O and Ni-C produces the data as tabulated in Table 1. The decreased in oxygen coordination number in the first shell was noted 30 s after the addition of AIEt\(_2\)(OEt) indicating a change in the square planar geometry of Ni(dpm)\(_2\). This was followed by the appearance of carbon atom coordination number in the second shell with 2.8 (4) carbon atoms and maintained to 3.1 (8) carbon atoms after 20 minutes as shown in the Figure 3. Time-resolved EDE and curve fitting analysis proposed\(^13\) a reaction as displayed in Figure 4.

Comparison of each spectrum showed that species 1 is observed in the first spectrum. The resulting background subtracted, k\(^3\)-weighted, Ni K-edge dispersive EXAFS and Fourier transform are presented in Figure 5 (a-d), together with the best experimental fits. It is assumed that the precatalyst started to react with the co-catalyst within 16s (Figure 5a). After 32 s, a reduced number of oxygen atoms in the first coordination sphere correspond to species 2 (Figure 5b). The coordination number shows one ligand dpm is attached to the nickel centre (average of 1.6 to 2.2 oxygen atoms) within experimental error\(^15\). The second shell is fitted with a carbon atom from the ethyl group and hexene, and shows some inconsistency that either 2 or 3 carbon atoms are bonded. At this point, it is crucial to confirm whether intermediate forms first or the product is being produced as initial rapid changes occurred from 1\(^{st}\) to the 10\(^{th}\) spectrum\(^16\).

Analysis of the 5\(^{th}\) spectrum (Figure 5c) revealed the apparent of 2.7 (9) carbon atoms at 1.932 (27) Å, meanwhile, on 6\(^{th}\) spectrum, 2.6 (4) carbon atoms is fitted at 1.927 (22) Å on the second shell. Analysis of the final (30\(^{th}\)) spectrum shows more consistent parameters and corresponds to species 2. 3.0 (5) carbon atoms are fitted at 1.970 (25) Å in the second shell. The spectrum was also recorded after 20 minutes of reaction. Analysis of the spectrum (Figure 5d) indicated that organometallic 2 is present in the solution, with 3.1 (8) carbon atoms well defined at 1.972 (31) Å. The solution remained homogeneously dark brown. However, detection on the dimp'siation of hexene and oligomeric α-olefin was not investigated in this research.

The experiment with the higher ratio was performed on the Ni(dpm)\(_2\) catalyst using AIEt\(_2\)(OEt) of 1.6 M solution as 1:13.3 ratio of Ni(dpm)\(_2\):AIEt\(_2\)(OEt). This run using 100 accumulations with 20 ms integration time showed changes after the 6\(^{th}\) spectra but the data quality is not very good.

CONCLUSIONS

The characterization of the organometallic complex at different ratios of alkyl-aluminum co-catalyst, Ni(dpm)\(_2\)_AIEt\(_2\)(OEt) of 1:1,1:2,1:4,1:6 and 1:13.3, and also different scan times, 1 to 1000 accumulations showed some consistency in the derived parameters support the reliability of dispersive EXAFS. Time-resolved EDE studies on Ni(dpm)\(_2\)/AIEt\(_2\)(OEt)/l-hexane of different ratios (1:1:20, 1:2:20, 1:4:20, 1:6:20, 1:8:20 and 1:13:20) at room temperature monitored the formation of Ni(dpm)\(_2\)C\(_2\)H\(_5\)(R), R=alkyl. The derived structural parameters from EDE gave averaged distances of Ni-O 1.86 Å and
Figure 5: The EDE Ni K-edge k^2-weighted EXAFS and Fourier transform, phaseshift corrected for oxygen, of the reaction of Ni(dpm)$_2$ + AIEt$_2$(OEt) + 1-hexene of 1:6:20; Ni [60 mM]:Al[360 mM], 1000 scans, It = 16 ms.
Ni-C2.00A. The Ni(dpm)$_2$AIEt$_3$(OEt):1-hexene of ratio of 1:6:20 were acquired within 16 s for each spectrum. EDE measurements using a new rectangular Si(111) monochromator and Hamamatsu S4874 photodiode array at Station 9.3, Daresbury Laboratory have yielded consecutive spectra data taken at 1-1000 accumulations with 2-30 ms integration time to follow the changes during initiation of the catalytic reaction. Using the stronger reagent of AIEt$_3$, EDE was able to follow the reaction within 31 ms (15 ms dead-time).

The success of these time-resolved EXAFS experiments has shown that this method is reliable to use for further investigations on reactions with a millisecond dead time.

ACKNOWLEDGEMENTS

We would like to thanks the Synchrotron Radiation Source, Daresbury Laboratory, and Warrington for the research grants and University Putra Malaysia for the sponsorship to Dr Abdul Rahman.

REFERENCES

8. Binsted N., Campbell J.W., Gurman S.J. and Stephenson PC, EXCURVE 92, Daresbury Laboratory, Warrington, UK, (1992)
Third International Conference on Magnetic and Superconducting Materials
01 Sep 2003 - 04 Sep 2003

Contact details
Prof. CHEIKHROUHOU Abdelwaheb
Faculté des Sciences de Sfax, BP 802, 3018 Sfax
Sfax 3018 Sfax
TUNISIA
E-mail: Abdel.Cheikhrouhou@fss.rnu.tn Tel: 0021674274390 Fax: 0021674274437

Organiser: The 141st Committee on Microbeam Analysis of Japan Society for the Promotion of Science

Contact details
Tsuneo Yasue
Osaka Electro-Commun. Univ. 18-8 Hatsu-cho Neyawaga 572-8530 Osaka (Japan)
E-mail: yasue03@esc.osakae.ac.jp
Tel:+81-72-824-1131 Fax: +81-72-825-4590

Spin and Charge Transport in Nanostructures
01 Sep 2003 - 05 Sep 2003
Braga, Portugal Registration deadline: 29 Jun 2003 Subject area: Condensed Matter

Organiser:
J. M. P. Carmelo, A. H. Castro Neto, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres Contact details Dra. Katrina Hibberd EuroconferenceSCTN Braga - 2003 Departamento de Física da Universidade do Minho Campus de Gualtar, 4710-057 Braga, Portugal Portugal E-mail: sctn2003@fisica.uminho.pt Tel:+351 253 604 060/320 Fax: ^351 253 678 981

9th Frontiers of Electron Microscopy in Materials Science - FEMMS2003
05 Oct 2003 - 10 Oct 2003
Berkeley, CA, United States Registration deadline: 11 Apr 2003 Subject area: Material Physics

Contact details Dr. Wayne King
Lawrence Livermore National Laboratory
Livermore 94551 CA United States E-mail: femms2003@llnl.gov Tel: 925 423 6547

4th International Symposium on Atomic Level Characterizations for New Materials and Devices ’03 (ALC ’03)
05 Oct 2003- 10 Oct 2003
Kauai, Hawaii, United States Subject areas: Applied Physics,Condensed Matter,Material Physics,Measurement Science Technology,Microscopy,Nanotechnology,Solid State Physics,Surface Physics

7th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures (ACSiN-7)
16 Nov 2003- 20 Nov 2003
Nara-ken New Public Hall, Nara, Japan Registration deadline: 15 Sep 2003 Contact details Mitsuhiko Katayama Department of Electronic Engineering Graduate School of Engineering Osaka University Suita 565-0871 Osaka (Japan)
E-mail: acsin7@ele.eng.osaka-u.ac.jp
Tel:+81-6-6879-7776 Fax: +81-6-6879-7780

Contact details
Mitsuhiro Katayama
Department of Electronic Engineering
Graduate School of Engineering
Osaka University
Suita 565-0871 Osaka (Japan)
E-mail: acsin7@ele.eng.osaka-u.ac.jp
Tel:+81-6-6879-7776 Fax: +81-6-6879-7780