INTRODUCTION

Phenylpropanolamine hydrochloride (α-(1-amino ethyl) benzene methanol hydrochloride), a largely acting sympathomimetic drug with an acting similar to that of CNS stimulants. It is given orally as the hydrochloride salt for the symptomatic treatment of nasal congestion and it is frequently used in mixed preparation for relief of cough and cold symptoms. Its usual dose upto 25 mg 3 or 4 times daily orally. Amberlite IR120, a strong cation exchange resin is non-toxic and safe for human consumption and also active at entire pH range (0 to 14). The average particle size range of resin is 120 m and therefore is suitable for formulation of physical stable and esthetically acceptable oral dosage form. The drug resinate complex was prepared with an objective to minimize the release of drug in the gastric fluid. The drug molecule attached to the resin are released by exchanging with appropriate charge ion in gastrointestinal tract followed by diffusion of free drug molecule out of the resin. The following reaction represents the preparation and exchange reaction affecting drug release in vivo.

Preparation

\[\text{RESIN-SO}_3\text{H} + \text{Phenylpropranolamine HCL} = \text{HCL} + \text{RESINSO}_3\text{Phenylpropranolamine.H} \]

Exchange in body

\[\text{RESIN-SO}_3\text{Phenylpropranolamine.H} + \text{NaCL} = \text{Phenylpropranolamine.HCl} + \text{RESIN-SO}_3\text{Na} \]

A strong acid risen must be used to minimized exchange of drug by hydrogen ion, to avoid excessive drug release in the gastric fluid.

MATERIAL AND METHODS

A strong cation exchange resin (Amberlite IR 120) was purchased from Merck limited Delhi. Phenylpropanolamine, ethanol was obtained from department of pharmacy, Barkatullah University, Bhopal.

Loading of drug on ion exchange resin

Preparation of drug-resinate was carried out by ion exchange column chromatography. The ion exchange resin was taken in a china dish and ethanol was added to in order to establish...
equilibrium and complete swelling. Then the column was packed with ion exchange resin. Accurately weighed 2g of Phenylpropanolamine hydrochloride was dissolved in 100 ml of ethanol and passed through the top of the column with the help of pipette. The drug-resinate was then washed with dematerialized water to remove contaminating ions. The drug to form beads.

pH paper test

The pH of the solutions of before loading and after loading were determined in which the result obtained are shown in Table-1.

Estimation of percentage entrapment of drug

It was determined by eluting the drug in 0.1 M HCl. 2 g of drug-resinate was stirred with 100 ml of 0.1 M HCl. The solution was filtered and after suitable dilution drug content was determined spectrophotometrically at λmax of 250 nm. Table - 1 indicates that the eluent obtained is acidic in nature, while the drug being salt shows neutral pH. It proves the loading of the drug on the resin, since it follows the following reaction:

\[
RESIN-SO_3H + \text{Phenylpropanolamine.HCl} \rightarrow \text{Resin Salt} = \text{HCl} + RESIN-SO_3\text{Phenylpropanolamine.H Acid Drug-resinate}
\]

RESULTS AND DISCUSSION

The process for preparing phenylpropanolamine resinate was optimized with respect to methodology, drug resin proportion and time for loading. Loading was tried out by column chromatography method. The 50.60% w/w was successfully loaded on the resin as shown in Fig. 1. The dissolution test of drug resinate using water as a solvent shown no release of drug in it, thus proposing the phenylpropanolamine resin complex an effective controlled release oral dosage form. It is thus proposed that the phenylpropanolamine resin complex can be useful scaffold synthesis method in combinatorial ion exchange chemistry.

Table - 1: Observation Table for pH estimation

<table>
<thead>
<tr>
<th>Solution</th>
<th>pH</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before loading</td>
<td>7.4</td>
<td>Neutral</td>
</tr>
<tr>
<td>After loading</td>
<td>1.0</td>
<td>acidic</td>
</tr>
</tbody>
</table>

Therefore, % Drug loaded = 100 - % drug retained in eluent. Hence, Table -2 shows the percentage of drug loading was determined.

Table - 2: Linearity data for solution after loading

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Time interval for sample taken (25 µg/ml)</th>
<th>Absorbance at λ 250 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>After ½ hrs</td>
<td>0.0885</td>
</tr>
<tr>
<td>2.</td>
<td>After 1 hr</td>
<td>0.0804</td>
</tr>
<tr>
<td>3.</td>
<td>After 1½ hrs</td>
<td>0.0755</td>
</tr>
<tr>
<td>4.</td>
<td>Final 4½ hrs.</td>
<td>0.0452</td>
</tr>
</tbody>
</table>
Authors are thankful to the management of Department of Pharmacy, Barkatullah University, Bhopal for providing facilities for this work.

REFERENCES

